Global Regularity for a Logarithmically Supercritical Hyperdissipative Navier-stokes Equation

نویسنده

  • TERENCE TAO
چکیده

Let d ≥ 3. We consider the global Cauchy problem for the generalised Navier-Stokes system ∂tu+ (u · ∇)u = −D u−∇p ∇ · u = 0 u(0, x) = u0(x) for u : R×R → R and p : R×R → R, where u0 : R d → R is smooth and divergence free, and D is a Fourier multiplier whose symbol m : R → R is non-negative; the case m(ξ) = |ξ| is essentially Navier-Stokes. It is folklore (see e.g. [5]) that one has global regularity in the critical and subcritical hyperdissipation regimes m(ξ) = |ξ| for α ≥ d+2 4 . We improve this slightly by establishing global regularity under the slightly weaker condition that m(ξ) ≥ |ξ|/g(|ξ|) for all sufficiently large ξ and some non-decreasing function g : R → R such that ∫ ∞ 1 ds sg(s)4 = +∞. In particular, the results apply for the logarithmically supercritical dissipation m(ξ) := |ξ| d+2 4 / log(2 + |ξ|).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Global regularity for a logarithmically supercritical hyperdissipative dyadic equation

We prove global existence of smooth solutions for a slightly supercritical dyadic model. We consider a generalized version of the dyadic model introduced by Katz-Pavlovic [10] and add a viscosity term with critical exponent and a supercritical correction. This model catches for the dyadic a conjecture that for Navier-Stokes equations was formulated by Tao [13].

متن کامل

Global Regularity for a Class of Generalized Magnetohydrodynamic Equations

It remains unknown whether or not smooth solutions of the 3D incompressible MHD equations can develop finite-time singularities. One major difficulty is due to the fact that the dissipation given by the Laplacian operator is insufficient to control the nonlinearity and for this reason the 3D MHD equations are sometimes regarded as “supercritical”. This paper presents a global regularity result ...

متن کامل

The 2d Boussinesq-navier-stokes Equations with Logarithmically Supercritical Dissipation

This paper studies the global well-posedness of the initial-value problem for the 2D Boussinesq-Navier-Stokes equations with dissipation given by an operator L that can be defined through both an integral kernel and a Fourier multiplier. When the symbol of L is represented by |ξ| a(|ξ|) with a satisfying lim|ξ|→∞ a(|ξ|) |ξ|σ = 0 for any σ > 0, we obtain the global well-posedness. A special cons...

متن کامل

Global Regularity for a Logarithmically Supercritical Defocusing Nonlinear Wave Equation for Spherically Symmetric Data

We establish global regularity for the logarithmically energy-supercritical wave equation 2u = u log(2 + u) in three spatial dimensions for spherically symmetric initial data, by modifying an argument of Ginibre, Soffer and Velo [3] for the energy-critical equation. This example demonstrates that critical regularity arguments can penetrate very slightly into the supercritical regime.

متن کامل

Global regularity of solutions to systems of reaction-diffusion with Sub-Quadratic Growth in any dimension

This paper is devoted to the study of the regularity of solutions to some systems of reaction– diffusion equations, with reaction terms having a subquadratic growth. We show the global boundedness and regularity of solutions, without smallness assumptions, in any dimension N . The proof is based on blow-up techniques. The natural entropy of the system plays a crucial role in the analysis. It al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009